

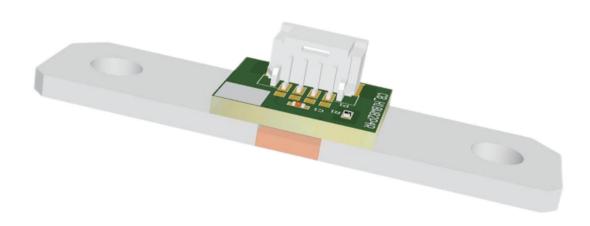
PCBS6918B100P2AC00, Automotive Operation Temperature -40 °C ~+125 °C Shunt Based Current Sensing Module

1. Characteristics

- Continuous Operating Range: -350A~+350A
- Connector: Horizontal 4 PIN
- High Accuracy Current Measurement
- Real-Time Temperature Measurement
- Applicable to High Pulse Current
- Low TCR, Low Inductance, Low Thermal EMF
- Excellent Long-Term Stability
- Operating Temperature Range: -40°C~125°C

3. Applications

- BMS Current Measurement
- BDU/PDU Current Measurement


2. Introduction

PCBS6918B100P2AC00 is an automotive current sensing module used to assist in measuring bidirectional DC current. It has high accuracy, low TCR, low inductance, low thermal EMF, and excellent long-term stability and anti-interference ability.

This module is designed based on a low-TCR shunt, which is welded with PCBA and can be installed on the circuit through bolts. It is used to collect bus current and shunt temperature, and send the measured signal to the signal processing side of the user defined module. It can be customized according to the specific technical requirements.

Module Information

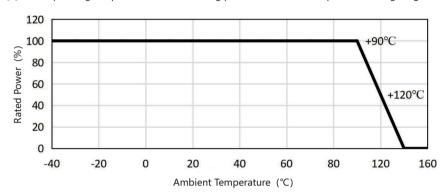
Shunt Size	Hole Diameter	Connector
69mm×18mm	7mm	5023520400

Content

1,	Characteristics	01
2,	Applications	01
3,	Introduction	01
4,	Revision	02
5,	Specifications	03
	5.1 Limit Parameters	03
	5.2 General Parameters	03
6,	Test Standards	04
7,	Current Data	05
	7.1 Temperature Compensation	05
	7.2 Current Data Acquisition	05
8,	Mechanical Structure	06
	8.1 Structural Diagram	06
	8.2 Laser QR Code	06
	8.3 Connector	07
	8.4 Connector Definition	07
	8.5 Diagram of PCB	07
	8.6 Copper Bar Connection	07
9,	Storage & Packaging	80
	9.1 Storage	30
	9.2 Packaging	08

4. Revision

Date	Revised Content	Note
2023.04.14	-	A0
2023.05.06	Data Matrix Update	A1


5. Specifications

5.1 Limit Parameters

Note: Product will affect its reliability and cause unexpected permanent damage if operating under limit parameters for long time.

Parameter	Condition	Min.	Typical	Max.	Unit
Current Measurement Range	±1000A			5	S
Operating Temperature		-40		+125	°C
Storage Temperature		-40		+125	°C
Humidity				95	%RH

[1]When operating temperature > 90°C, derating power is needed. The specific derating range refers to the figure below.

5.2 General Parameters

Test Conditions: Ambient Temperature 25°C (Unless Otherwise Noted)

Parameter	Condition	Min.	Typical	Max.	Unit
Shunt					•
Resistance			100		μΩ
Tolerance			±5		%
TCR	+20°C∼+175°C		100		ppm/°C
ICK	-55°C~+20°C		150		ppm/°C
Continuous Operating Current			±350		А
Thermal EMF				0.5	μV/°C
Inductance				3	nH
Operating Temperature Range			-55°C~+175°C		°C
NTC					•
Resistance			10		kΩ
Tolerance			±1		%
TCR	25/85°C		3434		K
Operating Temperature Range			-40°C~+150°C		°C
Capacitor					•
Capacitance			0.1		μF
Tolerance			±10		%
Rated Voltage			50		V
Operating Temperature Range			-55℃~+125℃		℃

6. Test Standards

Test No.	Test Standards	Test Items				
General inspection						
1	/	Appearance				
2	/	Dimension				
3	/	Weight				
4	/	Flatness of installation				
Electrical loa	ads					
5	VW 80000-2021 5.4.20	E-18 Insulation resistance				
6	VW 80000-2021 5.4.22	E-20 Dielectric strength				
7	GB/T 6148-2005	Drift of temperature				
Climatic loa	ds					
8	GB/T 2423.2-2008	High temperature aging				
9	GBT 2423.1-2008	Low-temperature operation				
10	VW 80000: 2021 5.6.5	K-05 Thermal shock (component)				
11	GB/T2423.50-2012 MIL-STD-202 Method 103	Damp heat, constant				
12	VW 80000: 2021 5.8.3	L-03 Service life test – Temperature cycle durability testing				
13	GB/T 10125-2021	Salt spray				
Mechanical	loads					
14	VW 80000-2021 5.5.1	M-01 Free fall				
15	VW 80000-2021 5.5.4	M-04 Vibration test				
16	VW 80000-2021 5.5.5	M-05 Mechanical shock				
Regulation '	Validation					
17	RoHS	Pb, Cd, Hg, Cr(V), PBBs, PBDEs				
18	REACH	CMR,PBT,vPvB				

7, Current Data

7.1 Temperature Compensation

PCBS6918B100P2AC00 applies temperature compensation to weaken the impact of ambient temperature changes on the shunt resistance. A fitting algorithm is used to compute a curve of the shunt resistance change with temperature, as shown in Figure 7-1.

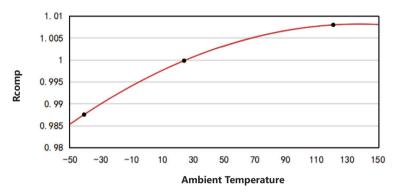


Figure 7-1. RCOMP Temperature Characteristic Curve

As shown in Figure 7-1, the compensation factor RCOMP temperature characteristic curve is:

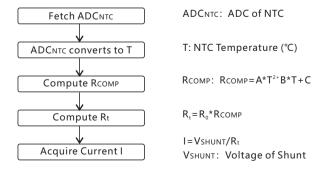
$$R_{COMP} = A*T^2 + B*T + C$$

Demonstration:

RCOMP: The ratio of the shunt resistance value at the present ambient temperature to the value at the initial temperature.

T: Present Temperature of Shunt A: Coefficient of Quadratic Term T²

B: Coefficient of Primary Term T


C: Constant Term

Shunt resistance R_t at present temperature t, through temperature compensation:

$$R_t = R_0 * R_{COMP}$$

[1] R_0 is the initial resistance of shunt at lab environment, usually at $+25^{\circ}C\pm2^{\circ}C$

7.2 Current Data Acquisition

8. Mechanical Structure

8.1 Dimensions

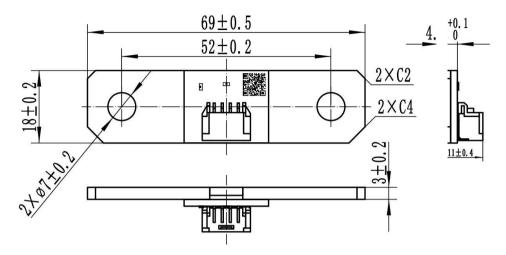


Figure 8. 1 Structure Diagram

8.2 Laser QR Code

8.2.1 Code Size

No.	Materials	Size L*W(mm)	
1	PCB Cover Size	6*6	
2	Data Matrix Size	5*5	

8.2.2 Data Matrix

QR code includes the year, month, day, serial number and resistance. (e.g. resistance about $100\mu\Omega$, rounded to 3 decimal places: $100.000\mu\Omega$, is written as R100000n. If it is 99.000 $\mu\Omega$, R99000n.)

Content	Year	Month	Day	Module ID	R ₀ ^[1]	Coefficient A	Coefficient B	Constant Term C
Format	YYYY	MM	DD	xxxxx	Rxxxxxxn or Rxxxxxn ^[2]	±x.xxxxxxxxx	±x.xxxxxxxxx	±x.xxxxxxxx
Fuernale	2020	11	25	00001	R100123n R99123n	-0.000000576	+0.000086780	+0.998188760
Example					+0.000086780+0 +0.000086780+0			

^[1] R_0 , the initial resistance of shunt at lab environment, usually at 25°C±2°C, in n Ω .

^[2]If R≥100μΩ, R₀ is written as Rxxxxxxn

If $R < 100 \mu\Omega$, R_0 is written as Rxxxxxxn

^[3]If $R \ge 100 \mu\Omega$, the total number of characters is 57.

If R < 100 $\mu\Omega$, the total number of characters is 56.

8.3 Connector

Manufacturer	Pin Count	Part #	Structural Diagram
Molex	4	5023520400 ^{t1)}	

8.4 Connector Definition

No.	Pin No.	Code	Description	Structural Diagram
1	Pin 1	T1	Temperature Sensor Pin 1	
2	Pin 2	S1	Current Sensor Pin 1 [1]	
3	Pin 3	S2	Current Sensor Pin 2 ^[1]	1 2 3 4
4	Pin 4	T2	Temperature Sensor Pin 2	

[1] In general, pin 1 is the positive end of the current, and pin 2 is the negative end.

8.5 PCB Structural Diagram

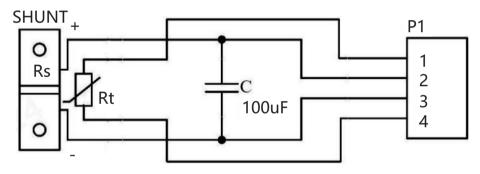


Figure 8-1. PCB Structural Diagram

8.6 Copper Bar Connection

- Recommended Bolts: M6
- Recommended Torque: 8-10Nm
- Recommended Width * Thickness of Copper Bar: 24mm*3mm
- Recommended Length of Overlap between Shunt and Copper Bar: 20mm
- Do not use a flat washer between the copper bar and the shunt
- Keep the surface of shunt and copper bar clean and free of scratches

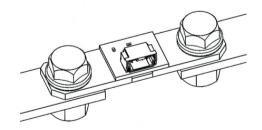


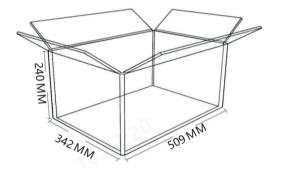
Figure 8-2. 6918 Shunt Connection Diagram

9.Storage & Packaging

9.1 Storage

- Storage temperature: +15°C~+35°C. Storage humidity: 40% RH~60% RH. Storage height: H < 2m
- The storage environment shall be clean, tidy, dry and free of harmful gases.
- The packaging case shall be protected from direct sunlight.
- It is recommended that the storage time of finished products T≤12 months.
- Anti-static bracelet or gloves shall be worn during installation, storage and handling.

9.2 Packaging


9.2.1 General Information

Packaging Element	Specifications			
SNP ^[1]	150			
Container	Carton			
Container Size	509*342*240 mm			

[1] SNP, Standard Number of Package

9.2.2 Auxiliary Materials Information

No.	Materials	Size L*W*H(mm)	Quantity	Recycle
1	50-Grid EPE Tray	496*328*61	3	No
2	EPE Tray Cover	495*325*5	4	No
3	Anti-Static PE Bag	900*510	1	No

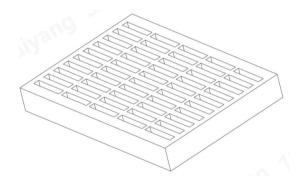


Figure 9-2. Structure Diagram of EPE

Disclaimer

This disclaimer is applicable to the purchaser or user (hereinafter referred to as "user") of electronic products produced by Shenzhen C&B Electronic Co., Ltd. and its affiliated companies (hereinafter referred to as "C&B") or produced by a third party.

Unless individually stated in writing, the technical and reliability data (including datasheets), design resources (including reference designs), application or other design suggestions, network tools, security information and other resources related to this document provided by C&B are subject to change without notice. Users should check and obtain the latest relevant information before ordering C&B products, and verify whether the information is latest and complete.

C&B provides the information of this document "according to original product". C&B does not guarantee that there is no defect and does not make any express or implied warranty, including but not limited to merchantability, examples, implied meaning and typical value.

The information contained in this document is based on laboratory conditions, and the statement that the product is suitable for specific applications is based on the understanding of the typical requirements of C&B for general use. The characteristics and parameters of C&B Products in the user application may be different from those in the datasheet due to (i) the combination of C&B Products with other components in the user application, or (ii) the user application environment. The characteristics and parameters of C&B products may and do vary in different applications, and the actual performance may change over time. Users should always verify the actual performance of C&B products in their specific equipment and applications, and independently determine how many additional test margins should be added to their equipment or applications to fill the gap between the laboratory and the actual conditions.

The maximum value written in this document is that this product can withstand without damaging the product. However, due to approaching the maximum value or exceeding the maximum value, C&B cannot guarantee the electrical and mechanical characteristics of the product, and cannot ensure that the product can work normally under the absolute maximum rated value. Users of C&B shall run all necessary tests on the product and its application to avoid potential defects or failures of the product and application, or the product or application of the customer's third party customers. C&B shall not be liable for this.

This document does not convey or imply any license of trademarks, patents and any other intellectual properties. C&B shall not be liable for any infringement of intellectual property or other rights of third parties that may result from the application of this document and the use of the company's products.

To the maximum extent permitted by law, C&B will not assume (i) any and all liabilities for any special, punitive, consequential, incidental or indirect damages or loss of income or profit (including but not limited to savings losses, business interruption and other costs or rework costs related to the disassembly or replacement of any product), or (ii) any and all implied warranties, including implied warranties of fitness for a particular purpose, non-infringement and merchantability. Whether such loss is based on tort (including negligence) warranty, it can be used as the theoretical basis for breach of contract or any other law.

For any loss of customers caused by any reason, the total and cumulative liability of C&B to customers for the products described in this document is limited by the terms of the contract or agreement signed between C&B and users.

For any update of this document, please pay attention to the official website ($\underline{www.resistor.today}).$