

650V GaN FET in TO-220 (source tab)

Description

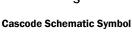
The TPH3212PS 650V, $72m\Omega$ Gallium Nitride (GaN) FET is a normally-off device. It combines state-of-the-art high voltage GaN HEMT and low voltage silicon MOSFET technologies offering superior reliability and performance.

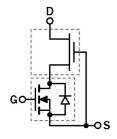
Transphorm GaN offers improved efficiency over silicon, through lower gate charge, lower crossover loss, and smaller reverse recovery charge.

Related Literature

- ANOOOO: Recommended External Circuitry for GaN FETs
- ANOOO3: Printed Circuit Board Layout and Probing
- ANOO10: Paralleling GaN FETs

Ordering Information


Part Number	Package	Package Configuration
TPH3212PS	3 lead T0-220	Source


TPH3212PS TO-220 (top view)

Cascode Device Structure

Features

- JEDEC qualified GaN technology
- Dynamic R_{DS(on)eff} production tested
- · Robust design, defined by
 - Intrinsic lifetime tests
 - Wide gate safety margin
 - Transient over-voltage capability
- Very low Q_{RR}
- Reduced crossover loss
- · RoHS compliant and Halogen-free packaging

Benefits

- Enables AC-DC bridgeless totem-pole PFC designs
 - Increased power density
 - Reduced system size and weight
 - Overall lower system cost
- · Achieves increased efficiency in both hard- and softswitched circuits
- Easy to drive with commonly-used gate drivers
- · GSD pin layout improves high speed design

Applications

- Datacom
- · Broad industrial
- PV inverter
- Servo motor

Key Specifications		
V _{DSS} (V)	650	
V _{(TR)DSS} (V)	800	
$R_{DS(on)eff}(m\Omega)\;max^*$	85	
Q _{RR} (nC) typ	90	
Q _G (nC) typ	14	

^{*} Dynamic on-resistance; see Figures 19 and 20

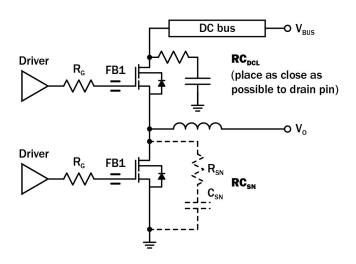
Common Topology Power Recommendations			
CCM bridgeless totem-pole* 2104W max			
Hard-switched inverter**	2486W max		

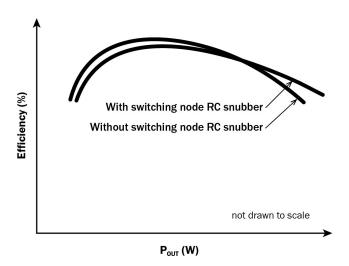
Conditions: F_{SW}=45kHz; T_J=115°C; T_{HEATSINK}=90°C; insulator between device and heatsink (6 mil Sil-Pad® K-10); power de-rates at lower voltages with constant current

- VIN=230VAC; VOUT=390VDC
- V_{IN} =380 V_{DC} ; V_{OUT} =240 V_{AC}

Absolute Maximum Ratings (T_c=25 °C unless otherwise stated.)

Symbol	Parameter		Limit Value	Unit
V _{DSS}	Drain to source voltage (T _J = -55 °C to 150 °C)		650	
V _{(TR)DSS}	Transient drain to source volta	age ^a	800	V
V _{GSS}	Gate to source voltage		±18	
P _D	Maximum power dissipation @	PT _C =25°C	104	W
I-	Continuous drain current @T _C =	=25°C b	27	A
l _D	Continuous drain current @T _C =100°C b		17	A
I _{DM}	Pulsed drain current (pulse width: 10µs)		120	A
(di/dt) _{RDMC}	Reverse diode di/dt, repetitive °		1400	A/µs
(di/dt) _{RDMT}	Reverse diode di/dt, transient ^d		2800	A/µs
T _C	Operating temperature	Case	-55 to +150	°C
TJ	Operating temperature	Junction	-55 to +150	°C
T _S	Storage temperature		-55 to +150	°C
T _{SOLD}	Soldering peak temperature ^e		260	°C


Notes:


- a. In off-state, spike duty cycle D<0.01, spike duration <1 μ s
- b. For increased stability at high current operation, see Circuit Implementation on page 3
- c. Continuous switching operation
- d. ≤300 pulses per second for a total duration ≤20 minutes
- e. For 10 sec., 1.6mm from the case

Thermal Resistance

Symbol	Parameter	Typical	Unit
Rejc	Junction-to-case	1.2	°C/W
R _{OJA}	Junction-to-ambient	62	°C/W

Circuit Implementation

Simplified Half-bridge Schematic

Efficiency vs Output Power

Recommended gate drive: (0V, 8-10V) with $R_{G(tot)} = 15-20\Omega$, where $R_{G(tot)} = R_G + R_{DRIVER}$

Gate Ferrite Bead (FB1)	Required DC Link RC Snubber (RC _{DCL}) ^a	Recommended Switching Node RC Snubber (RC _{SN}) b, c	
MMZ1608S181ATA00	10nF + 8Ω	33pF + $15Ω$	

Notes:

- a. RC_{DCL} should be placed as close as possible to the drain pin
- D. A switching node RC snubber (C, R) is recommended for high switching currents (>70% of IRDMC1 or IRDMC2; see page 5 for IRDMC1 and IRDMC2)
- c. I_{RDM} values can be increased by increasing R_G and C_{SN}

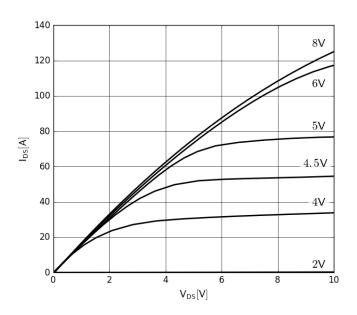
Electrical Parameter (T_J=25 °C unless otherwise stated)

Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions	
Forward Device Characteristics							
$V_{(BL)DSS}$	Drain-source voltage	650	_	_	V	V _{GS} =0V	
$V_{\text{GS(th)}}$	Gate threshold voltage	1.6	2.1	2.6	V	V _{DS} =V _{GS} , I _D =0.7mA	
	Due in a constant of the const	_	72	85	m()	V _{GS} =8V, I _D =17A	
R _{DS(on)eff}	Drain-source on-resistance a	_	148	_	mΩ	V _{GS} =8V, I _D =17A, T _J =150°C	
	Drain to course leakage auguent	_	3	30		V _{DS} =650V, V _{GS} =0V	
I _{DSS}	Drain-to-source leakage current	_	12	_	μA	V _{DS} =650V, V _{GS} =0V, T _J =150°C	
	Gate-to-source forward leakage current	_	_	100	4	V _{GS} =18V	
I_{GSS}	Gate-to-source reverse leakage current	_	_	-100	· nA	V _{GS} =-18V	
C _{ISS}	Input capacitance	_	1130	_		V _{GS} =0V, V _{DS} =400V, <i>f</i> =1MHz	
Coss	Output capacitance	_	102	_	pF		
C _{RSS}	Reverse transfer capacitance	_	13	_			
C _{O(er)}	Output capacitance, energy related b	_	142	_	pF	V _{GS} =0V, V _{DS} =0V to 400V	
C _{O(tr)}	Output capacitance, time related c	_	225	_	рг		
Q _G	Total gate charge	_	14.6	_			
Q _{GS}	Gate-source charge	_	3.1	_	nC	V_{DS} =400V, V_{GS} =0V to 8V, I_D =17A	
Q_{GD}	Gate-drain charge	_	3.4	_			
Qoss	Output charge	_	85.7	_	nC	V _{GS} =0V, V _{DS} =0V to 400V	
t _{D(on)}	Turn-on delay	_	24	_		$V_{DS}{=}400\text{V}, V_{GS}{=}0\text{V to }10\text{V},$ $I_{D}{=}18\text{A}, R_{G}{=}10\Omega$	
t _R	Rise time	_	7.5	_	ns		
$t_{\text{D(off)}}$	Turn-off delay	_	55.5	_	1113		
t _F	Fall time	_	5	_			

Notes:

a. Dynamic on-resistance; see Figures 19 and 20 for test circuit and conditions

b. Equivalent capacitance to give same stored energy as V_{DS} rises from 0V to 400V


c. Equivalent capacitance to give same charging time as V_{DS} rises from 0V to 400V

Electrical Parameters (T_J=25 °C unless otherwise stated)

Symbol	Parameter		Тур	Max	Unit	Test Conditions	
Reverse Dev	teverse Device Characteristics						
Is	Reverse current	_	_	16.5	А	V _{GS} =0V, T _C =100°C, ≤25% duty cycle	
V_{SD}	Reverse voltage a	_	2.0	_	V	V _{GS} =0V, I _S =17A	
VSD	Neverse voltage «	_	1.5	_	v	V _{GS} =0V, I _S =8.5A	
t _{RR}	Reverse recovery time	_	35	_	ns	I _S =18A, V _{DD} =400V,	
Q_{RR}	Reverse recovery charge	_	90	_	nC	di/dt=1000A/ms	
(di/dt) _{RDMC}	Reverse diode di/dt, repetitive b	_	_	1400	A/µs		
I _{RDMC1}	Reverse diode switching current, repetitive (dc) c, e	_	_	19	А	Circuit implementation and parameters on page 3	
I _{RDMC2}	Reverse diode switching current, repetitive (ac) c, e	_	_	24	А	Circuit implementation and parameters on page 3	
(di/dt) _{RDMT}	Reverse diode di/dt, transient d	_	_	2800	A/µs		
I _{RDMT}	Reverse diode switching current, transient d,e		_	30	Α	Circuit implementation and parameters on page 3	

Notes:

- a. Includes dynamic R_{DS(on)} effect
- b. Continuous switching operation
- c. Definitions: dc = dc-to-dc converter topologies; ac = inverter and PFC topologies, 50-60Hz line frequency
- d. ≤300 pulses per second for a total duration ≤20 minutes
- e. $\ \ I_{RDM}$ values can be increased by increasing R_G and C_{SN} on page 3

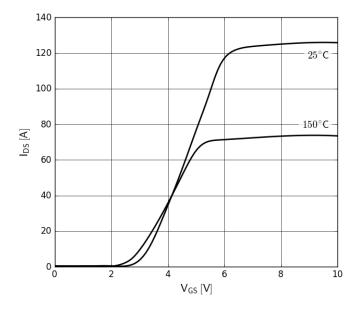

80 70 60 4.5V 50 40 30 20 3.5V 3V 50 20 0 2 4 6 8 1 V_{DS}[V]

Figure 1. Typical Output Characteristics T_J=25 °C

Parameter: V_{GS}

Figure 2. Typical Output Characteristics T_J=150 °C

Parameter: V_{GS}

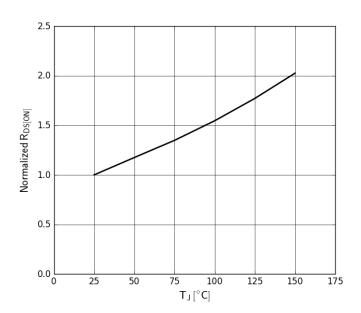
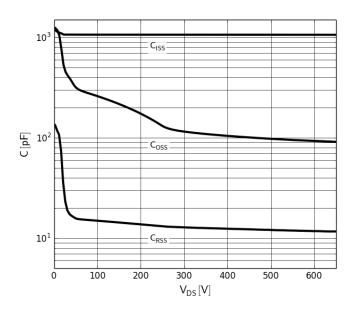
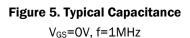




Figure 3. Typical Transfer Characteristics V_{DS} =10V, parameter: T_J

Figure 4. Normalized On-resistance $I_D=17A, V_{GS}=8V$

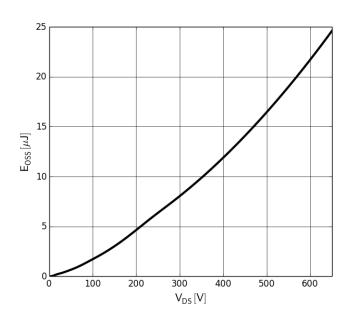


Figure 6. Typical Coss Stored Energy

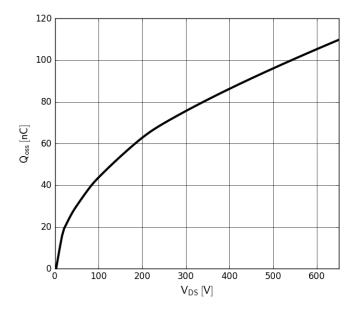


Figure 7. Typical Qoss

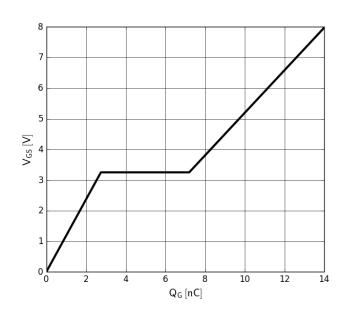


Figure 8. Typical Gate Charge I_{DS} =17A, V_{DS} =400V

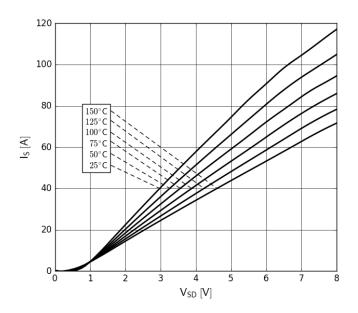


Figure 9. Forward Characteristics of Rev. Diode $I_S {=} f(V_{SD}), \ Parameter \ T_J$

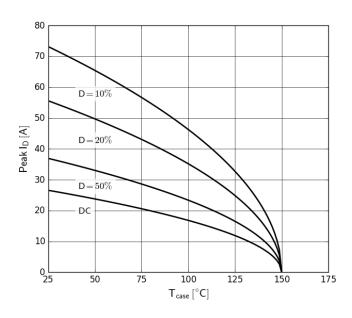


Figure 10. Current Derating Pulse width $\leq 10 \mu s$

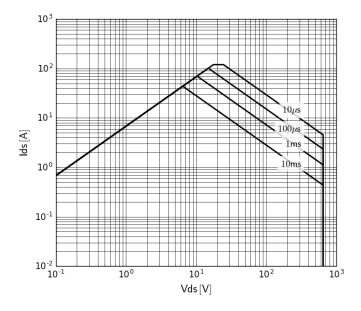


Figure 11. Safe Operating Area Tc=25°C (calculated based on thermal limit)

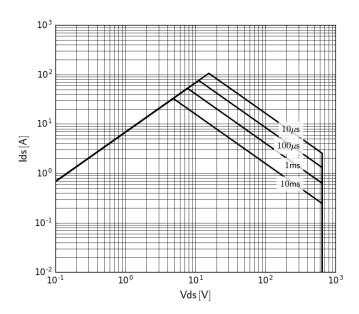
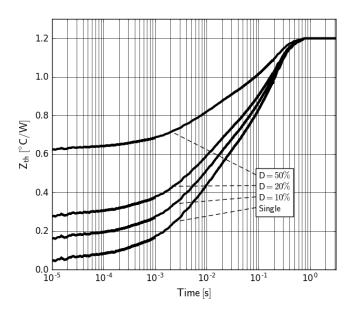



Figure 12. Safe Operating Area T_c=80 °C (calculated based on thermal limit)

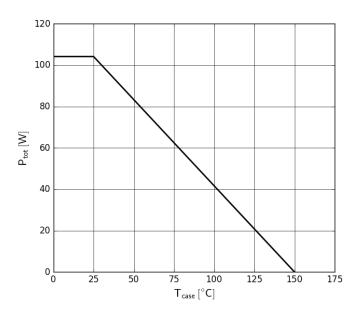
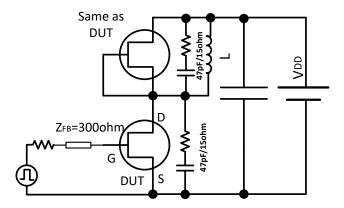



Figure 13. Transient Thermal Resistance

Figure 14. Power Dissipation

Test Circuits and Waveforms

Figure 15. Switching Time Test Circuit (see circuit implementation on page 3 for methods to ensure clean switching)

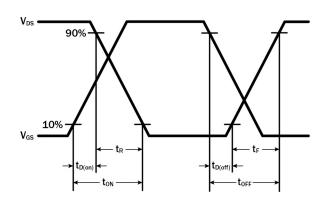


Figure 16. Switching Time Waveform

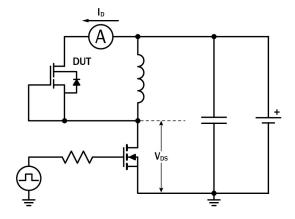


Figure 17. Diode Characteristics Test Circuit

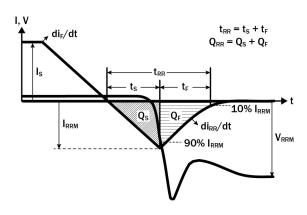


Figure 18. Diode Recovery Waveform

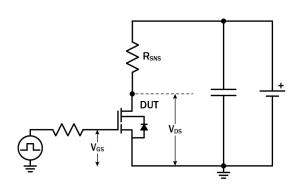


Figure 19. Dynamic R_{DS(on)eff} Test Circuit

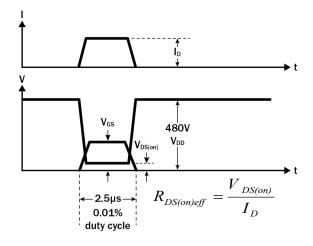


Figure 20. Dynamic R_{DS(on)eff} Waveform

Design Considerations

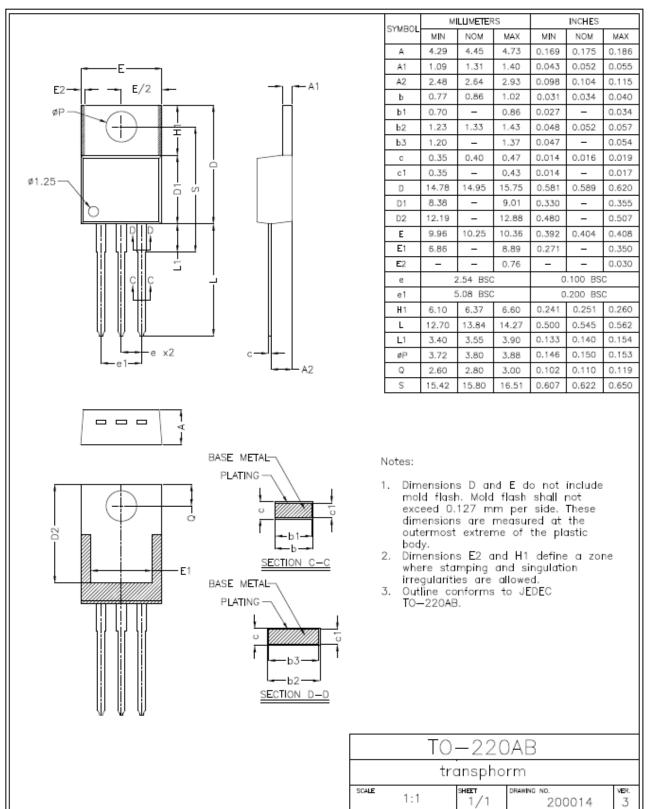
The fast switching of GaN devices reduces current-voltage crossover losses and enables high frequency operation while simultaneously achieving high efficiency. However, taking full advantage of the fast switching characteristics of GaN switches requires adherence to specific PCB layout guidelines and probing techniques.

Before evaluating Transphorm GaN devices, see application note <u>Printed Circuit Board Layout and Probing for GaN Power Switches</u>. The table below provides some practical rules that should be followed during the evaluation.

When Evaluating Transphorm GaN Devices:

DO	DO NOT
Minimize circuit inductance by keeping traces short, both in the drive and power loop	Twist the pins of TO-220 or TO-247 to accommodate GDS board layout
Minimize lead length of TO-220 and TO-247 package when mounting to the PCB	Use long traces in drive circuit, long lead length of the devices
Use shortest sense loop for probing; attach the probe and its ground connection directly to the test points	Use differential mode probe or probe ground clip with long wire
See ANOOO3: Printed Circuit Board Layout and Probing	

GaN Design Resources


The complete technical library of GaN design tools can be found at transphormusa.com/design:

- Reference designs
- Evaluation kits
- Application notes
- · Design guides
- Simulation models
- · Technical papers and presentations

Mechanical

3 Lead TO-220 (PS) Package

Pin 1: Gate; Pin 2: Source; Pin 3: Drain, Tab: Source

Revision History

Version	Date	Change(s)
10	11/14/2016	Added app note AN0009
11	12/12/2016	Updated dynamic measurement verbiage
12	2/15/2017	Updated package drawing; Added app note AN0010
13	11/1/2017	Updated Figures 11 & 12 (pg 7), effective on-resistance symbol to R _{DS(on)eff} to adhere to new JEDEC standards; Added common topology max power recommendations (pg 1), switching current values (pg 2), Circuit Implementation (pg 3), Q _{OSS} value (pg 4), Figures 7 & 8 (pg 6)
14	3/7/2021	Product discontinued