

TR0329M: 2.4 - 4.2 GHz Ultra Low Noise 2 Stage Bypassed LNA

1.0 Features

• Small signal gain @ 3600MHz: 34dB (High Gain mode)

@ 3600MHz: 15dB (Low Gain mode)

• NF @ 3600MHz: 0.5dB (High Gain mode)

@ 3600MHz: 0.5dB (Low Gain mode)

P1dB @ 3600MHz: 20dBm (High Gain mode)

@ 3600MHz: 10.5dBm (Low Gain mode)

• 5V Typical operating voltage

• Operating frequency: 2.4 to 4.0GHz

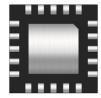


Figure 1.1 Device Image (20 Pin 3.5×3.5×0.75mm QFN Package)

2.0 Applications

- 4G/5G Infrastructure Radios
- Small Cells and Cellular Repeaters
- Phase Array Radar
- SDARS

3.0 Description

The TR0329M is a high-linearity, ultra-low noise 2-stage gain block amplifier module with internal 50ohm input output matching with a bypass mode functionality integrated to the second stage in the product. At 3.6 GHz, the amplifier, under high gain mode, typically provides 34dB gain, +35dBm OIP3, and 0.5 dB noise figure while drawing 90 mA current from a +5 V supply. The component also provides high performance in the low gain mode with 15dB gain, 0.5dB noise figure and +23.5dBm OIP3 while drawing 50 mA current.

The TR0329M is packaged in a compact, low-cost Quad Flat No Lead (QFN) 3.5x3.5x0.75mm, 20 pin plastic packages.

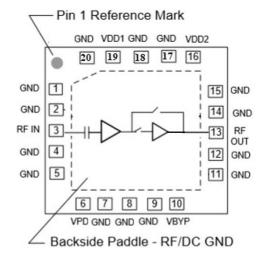


Figure 3.1 Function Block Diagram (Top View)

4.0 Ordering Information

Table 4.1 Ordering Information

Base Part Number	Package Type	Form	Qty	Reel Diameter	Reel Width	Orderable Part Number
TR0329M	20 Pin 3.5×3.5×0.75mm QFN	Tape and Reel	5000	13" (330mm)	18mm	TR0329MTRPBF
Tuned Evaluation Board, 3300 - 4000MHz						TR0329M-EVB-A

5.0 Pin Description

Table 5.1 Pin Definition

Pin Number	Pin Name	Description
1,2,4,5,7-	NC/GND	No internal connection, can be connected to ground
9,11,12,14,15,17 &18	INO/OND	The internal conficction, can be conficeted to ground
3	RF _{IN}	RF Input. DC blocking cap required
13	RF _{OUT}	RF Output.
19	VDD1	Vdd1 supplied through an external choke inductor
16	VDD2	Vdd2 supplied through an external choke inductor
6	VPD	+5V on this pin will shut down both the LNAs.
10	VBYP	+5V on this pin keep LNA1 on & LNA2 off. In 0V both LNAs on.
Package Base	Paddle/Slug	DC and RF Ground. Also provides thermal relief. Multiple vias
l dokago baso	i addio/Olag	are recommended

Note: [1] The backside ground slug of the device must be grounded directly to the ground plane through multiple vias to ensure proper operation. Adequate heatsinking required.

6.0 Absolute Maximum Rating

Table 6.1 Absolute Maximum Rating @T_A=+25°C Unless Otherwise Specified

Parameter	Symbol	Value	Unit					
Electrical Ratings								
Supply voltages	VDD1 & VDD2	+6	V					
RF input power CW	RF _{IN}	23	dBm					
Storage Temperature Range	T _{st}	-55 to +150	°C					
Operating Temperature Range	T _{op}	-40 to +105	°C					
Maximum Junction Temperature	TJ	170	°C					
Thermal Rati	ngs							
Thermal Resistance (junction-to-case) – Bottom side	Rejc	15.0	°C/W					
Soldering Temperature	T _{SOLD}	260	ů					
ESD Rating	gs							
Human Body Model (HBM)	Level 1B	500 to <1000	V					
Charged Device Model (CDM)	Level C	≥1000	V					
Moisture Rating								
Moisture Sensitivity Level	MSL	1	-					

Attention:

Maximum ratings are absolute ratings. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Exceeding one or a combination of the absolute maximum ratings may cause permanent and irreversible damage to the device and/or to surrounding circuit.

7.0 Recommended DC Operating Conditions

Table 7.1 Recommended Operating Conditions

the state of the s									
Parameter	Symbol	Minimum	Typical	Maximum	Unit				
Drain Voltages	VDD1		+5.0		V				
Drain Voltages	VDD2		+5.0		V				
Drain Rica Currenta	I _{DQ1} , Set by external drain feed	40	50		A				
Drain Bias Currents	I _{DQ2} , Set by external drain feed	80	90		mA				
Operating Temperature Range		-40	+25	+105	°C				

8.0 RF Electrical Specifications for 3300 - 4000MHz EVB A

Table 8.1 3300 – 4000MHz EVB @T_A=+25°C Unless Otherwise Specified; Venable = High

Parameter	Test Condition	Minimum	Typical	Maximum	Unit
Operational frequency Range		3.3 G	3.6G	4.0G	Hz
Gain	LNAs on Bypass off (High gain)		34		dB
Noise Figure (De-embedded)	LNAs on Bypass off (High gain)		0.5		dB
EVB Noise Figure	LNAs on Bypass off (High gain)		0.6		dB
Input Return Loss	LNAs on Bypass off (High gain)		11		dB
Output Return Loss	LNAs on Bypass off (High gain)		15		dB
OP1dB	LNAs on Bypass off (High gain)		20		dBm
OIP3	3600MHz, 0dBm per tone, Tone Spacing 1MHz		35		dBm
Gain	LNA1 on Bypass on (Low gain)		15		dB
Noise Figure (De-embedded)	LNA1 on Bypass on (Low gain)		0.5		dB
EVB Noise Figure	LNA1 on Bypass on (Low gain)		0.6		dB
Input Return Loss	LNA1 on Bypass on (Low gain)		15		dB
Output Return Loss	LNA1 on Bypass on (Low gain)		10		dB
OP1dB	LNA1 on Bypass on (Low gain)		10.5		dBm
OIP3	3600MHz, -10dBm per tone, Tone Spacing 1MHz		23.5		dBm
	LNAs ON Bypass OFF		90		
Current, Id	Only LNA1 ON & Bypass ON		50		mA
	Both LNAs OFF		5		
Isolation between RF _{IN} and	PD mode ON and Bypass ON		50		dB
RF _{out}	PD mode ON and High Gain ON		50		dB

Table 8.2 Control Truth Table @T_A=+25°C Unless Otherwise Specified.

PD	BP	State
1	0	LNA1 OFF, LNA2 OFF, Bypass OFF
0	0	LNA1 ON, LNA2 ON Bypass ON
0	1	LNA1 ON, LNA2 OFF, Bypass ON
1	1	LNA1 OFF, LNA2 OFF, Bypass OFF

Table 8.3 Switching Speed @T_A=+25°C Unless Otherwise Specified.

PD	BP	State	50% Vctrl to 90% of	50% Vctrl to 10% of RF	Units
			RF		
0V	0V	LNA1 ON, LNA2 ON, Bypass OFF	350		
	5V	LNA1 ON, LNA2 OFF Bypass ON		300	
5V	0V	LNA1 OFF, LNA2 OFF, Bypass OFF	700	430	ns
	5V	LNA1 OFF, LNA2 OFF, Bypass ON	320	560	

9.0 Typical Characteristics

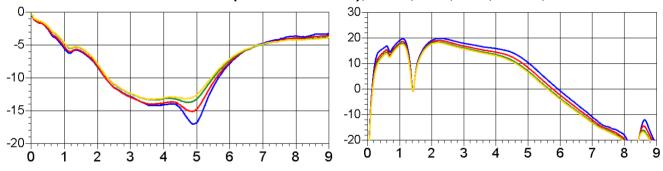


Figure 9.1.1 S11 (IRL in dB) vs Freq(GHz)

Figure 9.1.2 S21 (Gain in dB) vs Freq(GHz)

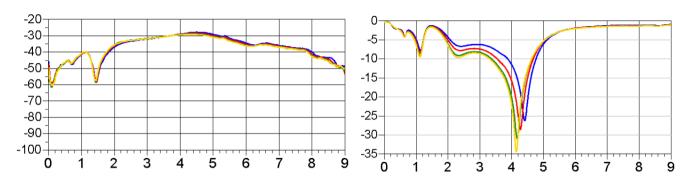
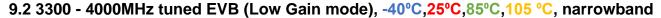



Figure 9.1.3 S12 (Rev Iso in dB) vs Freq(GHz)

Figure 9.1.4 S22 (ORL in dB) vs Freq(GHz)

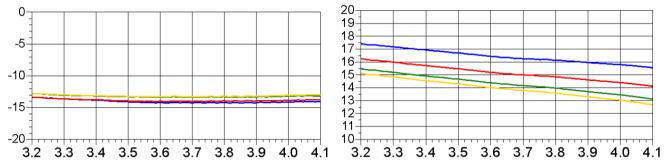


Figure 9.2.1 S11 (IRL in dB) vs Freq(GHz)

Figure 9.2.2 S21 (Gain in dB) vs Freq(GHz)

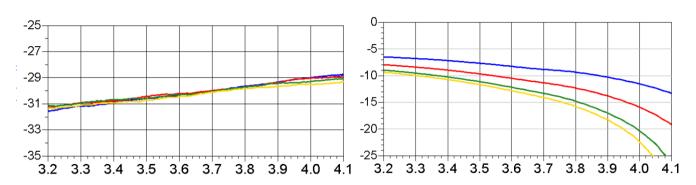


Figure 9.2.3 S12 (Rev Iso in dB) vs Freq(GHz)

Figure 9.2.4 S22 (ORL in dB) vs Freq(GHz)

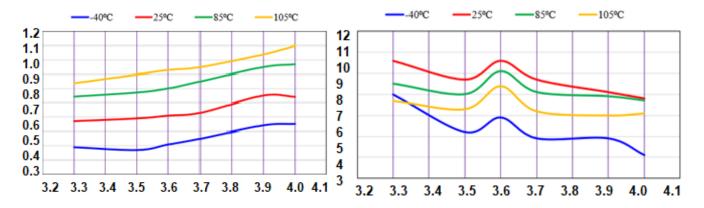


Figure 9.2.5 EVB Noise Figure (in dB) vs Freq(GHz) Figure 9.2.6 Output P1dB vs Freq(GHz)

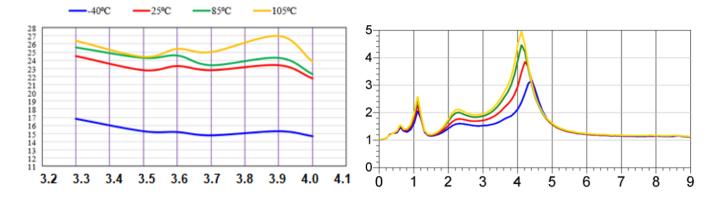
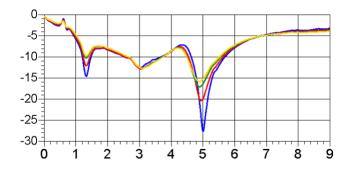



Figure 9.2.7 Output IP3 (in dBm) vs Freq(GHz)

Figure 9.2.8 Mu1 vs Freq(GHz)

9.3 3300 - 4000MHz tuned EVB (High Gain mode), -40°C,25°C,85°C,105 °C, broadband

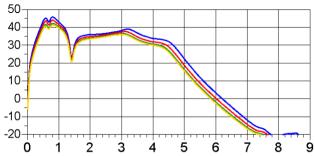
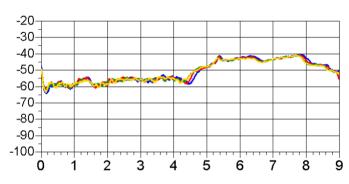



Figure 9.3.1 S11 (IRL in dB) vs Freq(GHz)

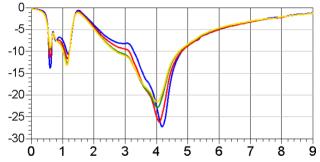
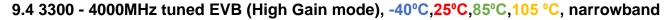
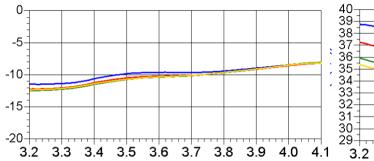




Figure 9.3.3 S12 (Rev Iso in dB) vs Freq(GHz)

Figure 9.3.4 S22 (ORL in dB) vs Freq(GHz)

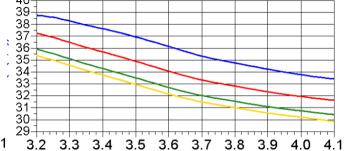


Figure 9.4.1 S11 (IRL in dB) vs Freq Freq(GHz)

Figure 9.4.2 S21 (Gain in dB) vs Freq Freq(GHz)

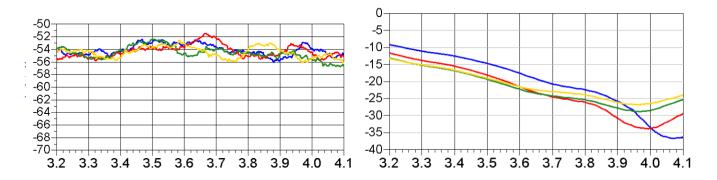


Figure 9.4.3 S12 (Rev Iso in dB) vs Freq(GHz)

Figure 9.4.4 S22 (ORL in dB) vs Freq(GHz)

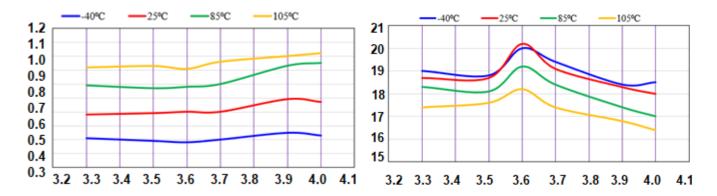


Figure 9.4.5 EVB Noise Figure (in dB) vs Freq(GHz)

Figure 9.4.6 Output P1dB vs Freq(GHz)

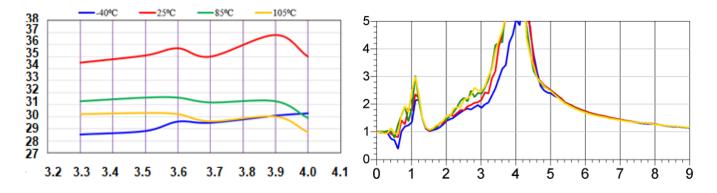


Figure 9.4.7 Output IP3(in dBm) vs Freq(GHz)

Figure 9.4.8 Mu1 vs Freq(GHz)

10.0 Evaluation Boards

10.1 3300 - 4000MHz EVB

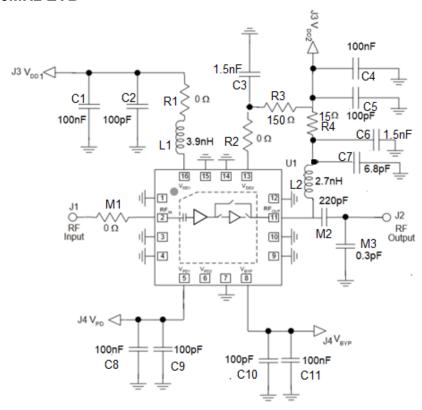


Figure 10.1 Schematic of the 3300-4000MHz EVB-A

Table 10.1 BOM of the 3300-4000MHz EVB

Component ID	Value	Manufacturer	Recommended Part Number		
R1, R2, M1	0Ω	Panasonic	ERJ-2GE0R00X		
R3	150Ω	Panasonic	ERJ-2RHD1500X		
R4	15Ω	Panasonic	ERJ-3RED15R0V		
L1	3.9nH	Coil craft	0402HP-3N9XGE		
L2	2.7nH	Coil craft	0402HP-2N7XGE		
C7	6.8pF	Murata	GJM1555C1H6R8BB01		
C3, C6	1.5nF	Murata	C0402C152K5GECAUTO		
M2	220pF	Kemet	C0402C221K5GACAUTO		
M3	0.3pF	Murata	GJM1555C1HR30BB01		
C2, C5, C9, C10	100pF	AVX	04025A101JAT4A		
C1, C4, C8, C11	100nF	TDK	C1005X7R1H104K050BE		
PCB Rogers RO4350B, 20 mils, 1 oz copper					

11.0 Device Package Information

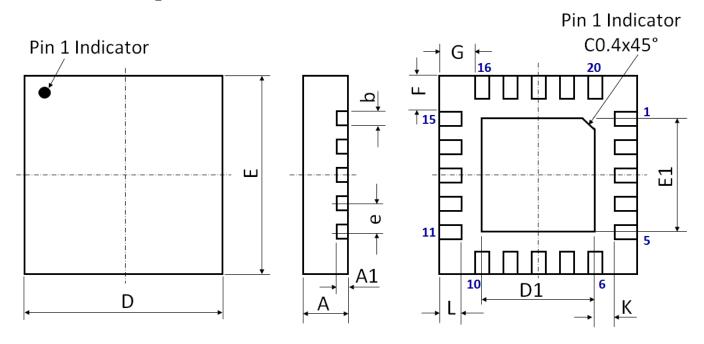


Figure 11.1 Device Package Drawing (All dimensions are in mm)

Table 11.1 Device Package Dimensions

. dio io i i i i zorioo i donago zimonoiono								
Dimension (mm)	Value (mm)	Tolerance (mm)	Dimension (mm)	Value (mm)	Tolerance (mm)			
Α	0.75	±0.05	Е	3.50 BSC	±0.05			
A1	0.203	±0.02	E1	2.00	±0.05			
b	0.25	±0.02	F	0.625	±0.02			
D	3.50 BSC	±0.05	G	0.625	±0.03			
D1	2.00	±0.03	L	0.40	±0.05			
е	0.50 BSC	±0.05	K	0.35	±0.05			

Note: Lead finish: Pure Sn without underlayer; Thickness: 7.5μm ~ 20μm (Typical 10μm ~ 12μm)

Attention:

Please refer to application notes *TN-001* and *TN-002* at http://www.tagoretech.com for PCB and soldering related guidelines.

12.0 PCB Land Design

Guidelines:

- [1] 2-layer PCB is recommended
- [2] Via diameter is recommended to be 0.3mm to prevent solder wicking inside the vias
- [3] Thermal vias shall be placed on the center pad
- [4] The maximum via number for the center pad is $3(X)\times3(Y)=9$

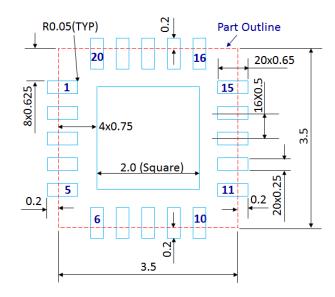


Figure 12.1 PCB Land Pattern

(Dimensions are in mm)

0.07Max
All Around
All Around
Metal Under Solder Mask Opening

Solder Mask Opening

Non-Solder Mask Defined (Preferred)

Solder Mask Defined

Figure 12.2 Solder Mask Pattern

(Dimensions are in mm)

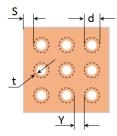


Figure 12.3 Thermal Via Pattern

(Recommended Values: S≥0.15mm; Y≥0.20mm; d=0.3mm; Plating Thickness t=25µm or 50µm)

13.0 PCB Stencil Design

Guidelines:

- [1] Laser-cut, stainless steel stencil is recommended with electro-polished trapezoidal walls to improve the paste release.
- [2] Stencil thickness is recommended to be 125µm.

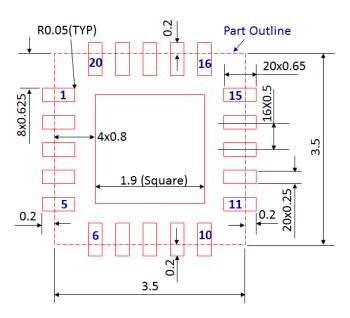


Figure 13.1 Stencil Openings (Dimensions are in mm)

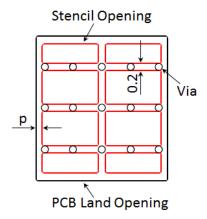


Figure 13.2 Stencil Openings Shall Not Cover Via Areas If Possible (Dimensions are in mm)

14.0 Tape and Reel Information

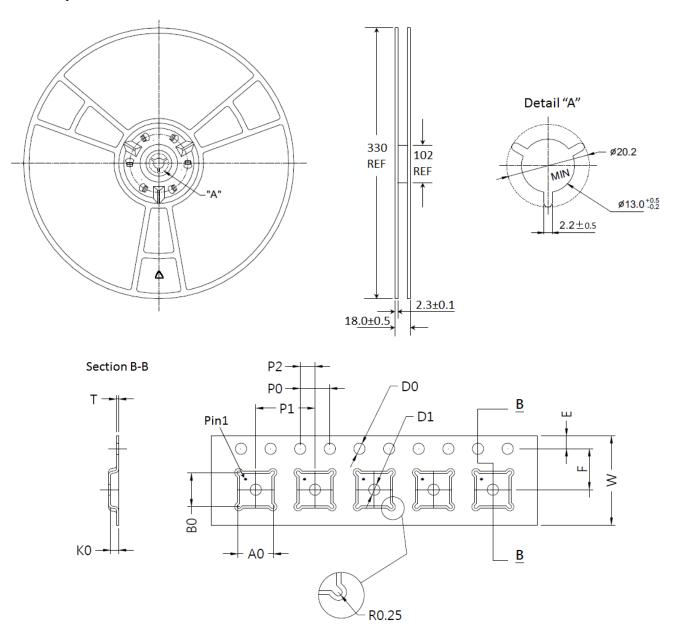


Figure 14.1 Tape and Reel Drawing

Table 14.1 Tape and Reel Dimensions

Dimension (mm)	Value (mm)	Tolerance (mm)	Dimension (mm)	Value (mm)	Tolerance (mm)
A0	2.35	±0.10	K0	1.10	±0.10
В0	2.35	±0.10	P0	4.00	±0.10
D0	1.50	+0.10/-0.00	P1	8.00	±0.10
D1	1.50	+0.10/-0.00	P2	2.00	±0.05
E	1.75	±0.10	Т	0.30	±0.05
F	5.50	±0.05	W	12.00	±0.30

Edition Revision 1.5 - 2022-06-27

Published by

Tagore Technology Inc.

5 East College Drive, Suite 200

Arlington Heights, IL 60004, USA

©2020 All Rights Reserved

Legal Disclaimer

The information provided in this document shall in no event be regarded as a guarantee of conditions or characteristics. Tagore Technology assumes no responsibility for the consequences of the use of this information, nor for any infringement of patents or of other rights of third parties which may result from the use of this information. No license is granted by implication or otherwise under any patent or patent rights of Tagore Technology. The specifications mentioned in this document are subject to change without notice.

Information

For further information on technology, delivery terms and conditions and prices, please contact Tagore Technology: support@tagoretech.com.