

Maxim > Design Support > Technical Documents > Tutorials > Wireless and RF > APP 5426

Keywords: receiver, ISM, RF, radio, frequency, Sallen-Key, lowpass filter, LPF, data filter, data slicer, threshold, comparator, RC time constant, cutoff frequency, peak detector, data rate

Baseband Calculations for ISM-RF Receivers

By: Martin Stoehr, Principal Member of the Technical Staff, Applications Jun 20, 2012

Abstract: Many industrial/scientific/medical (ISM) band radio frequency (RF) receivers use an external Sallen-Key data filter and a data slicer to generate the baseband digital output. This tutorial describes the ISM-RF Baseband Calculator, which can be used to calculate the filter capacitor values and the data slicer RC components, while providing a visual example of the baseband signals.

ISM-RF Baseband Calculator

The ISM-RF Baseband Calculator is divided into two worksheets that address the calculations related to the Sallen-Key lowpass filter (LPF), the data slicer threshold generation, and the resulting signals commonly associated with these baseband circuits.

Instructions Sheet

This tab provides a summary of the formatting conventions used on the *Baseband System* and *Slicer Threshold w Peak Detect* worksheets.

Baseband System Sheet

As noted on the *Instructions* sheet, there are two primary sections of the *Baseband System* worksheet: the **Sallen-Key LPF** section used for calculating the data filter feedback capacitor and the operational amp capacitor, and the **Data Slicer Threshold** section used for calculating the bit interval and recommended remote control (RC) component values. These sections have entry cells (outlined in red) that require user input to provide the values used for the subsequent calculations.

Click here for an overview of the wireless components used in a typical radio transceiver.

A B Baseband System Calculatic Salen-Key LPF Variables Data Rate for Filter Knee f.3d8 Filter Parameters a Data Filter Cap Cor Cop Amp Cap Cor Data Slicer Threshold Tor Bit period Tor Bit intervals n RC Time Constant RCrc	C DODS Equations f _{3dB} = 1.5 · f _{DR}	D Valid for MAX 10 15 1.414 1 150 75	E (1470, MA) Units kbps kHz pF pF	F 84471, MAX1473, M Butterworth 1.4.14 1 C _{F1} in Figure 1 C _{F2} in Figure 1	G AX7033, MAX7 Bessel 1.3617 0.618	H	1 J AX7042, MAX7030 MAX7000 05+	K L 0, MAX7031, and MAX7032
Baseband System Calculation Sallen-Key LPF Variables Data Rate for Filter Knee f.3d8 Filter Parameters a Data Filter Cap Cor Op Amp Cap Cor+ Cata Slicer Threshold Variables Bit period Tor Bit intervals n RC Time Constant RCrc	DODS EQUATIONS f ₃₀₈ = 1.5 · f _{DR} , = b / (a π (100k)(f ₃₀₈)) , + = a / (4π (100k)(f ₃₀₈))	Valid for MAX 10 15 1.414 1 150 75	(1470, MA) Units kbps kHz pF pF	Butterworth 1.414 1 C _{F1} in Figure 1 C _{F2} in Figure 1	Bessel 1.3617 0.618	1034, MAX7036, MA	MAX7042, MAX703	0, MAX7031, and MAX7032
Data Bitcer Threshold Corr Data Slicer Threshold Tor Data Slicer Threshold Tor Bit period Tor Bit intervals n RC Time Constant RCrc	Equations Equations f _{3dB} = 1.5 · f _{DR} $r = b / (a \pi (100k)(f_{3dB}))$ $r_{e_{+}} = a / (4\pi (100k)(f_{3dB}))$	10 15 1.414 1 150 75	Units kbps kHz pF pF	Butterworth 1.414 1 C _{F1} in Figure 1 C _{F2} in Figure 1	Bessel 1.3617 0.618		M4X7000	
Data Rate for Filter Knee f.3d8 Filter Parameters a Data Riter Cap CoF Cop CoF Op Amp Cap CoF Data Slicer Threshold Tor Bit period Tor Bit intervals n RC Time Constant RCrc	$f_{3dB} = 1.5 \cdot f_{DR}$ $r = b / (a \pi (100k)(f_{3dB}))$ $r_{P+} = a / (4\pi (100k)(f_{3dB}))$	10 15 1.414 1 150 75	kbps kHz pF pF	Butterworth 1.414 1 CF1 in Figure 1 CF2 in Figure 1	Bessel 1.3617 0.618			
Data Filter Knee f.3d8 Filter Knee f.3d8 Filter Parameters a Data Filter Cap CoF CoF CoF Op Amp Cap CoF+ CoF CoF Data Slicer Threshold ToR Bit period ToR Bit intervals n RC Time Constant RCrc	$\begin{split} f_{\rm JdB} &= 1.5 \cdot f_{\rm DR} \\ \\ \rho &= b \; / \; (a \; \pi \; (100 k) (f_{\rm JdB})) \\ \\ \rho_{+} &= a \; / \; (4 \pi \; (100 k) (f_{\rm JdB})) \end{split}$	15 1.414 1 150 75	kHz pF pF	Butterworth 1.414 1 CF1 in Figure 1 CF2 in Figure 1	Bessel 1.3617 0.618			
Filter Parameters a Bata Filter Cap CoF Op Amp Cap CoF CoF CoF Data Slicer Threshold Variables Bit period ToR Bit intervals n RC Time Constant RCrc	_σ = b / (a π (100k)(f _{.36B})) _{σ+} = a / (4π (100k)(f _{.36B}))	1.414 1 150 75	pF pF	1.414 1 CF1 in Figure 1 CF2 in Figure 1	1.3617 0.618			
Data Filter Cap CoF CoF Op Amp Cap CoF CoF Data Slicer Threshold Variables Bit period ToR Bit intervals n RC Time Constant RCrc	$_{\rho} = b / (a \pi (100k)(f_{-3cB}))$ $_{\rho_{*}} = a / (4\pi (100k)(f_{-3cB}))$	150 75	pF pF	1 CF1 in Figure 1 CF2 in Figure 1	0.618			10860 10860 0F
Data Filter Cap CoF CoF Op Amp Cap CoF CoF Data Slicer Threshold Variables Bit period ToR Bit intervals n RC Time Constant RCrc	$_{p_{+}} = b / (a \pi (100k)(t_{3dB}))$ $_{p_{+}} = a / (4\pi (100k)(t_{3dB}))$	150 75	pF pF	C _{F1} in Figure 1 C _{F2} in Figure 1				108kg 108kg
Data Filter Cap CoF Cor Op Amp Cap CoF. Cor Data Slicer Threshold Variables Bit period ToR Bit intervals n RC Time Constant RCrc	$_{\rho} = b / (a \pi (100k)(f_{3dB}))$ $_{\rho_{+}} = a / (4\pi (100k)(f_{3dB}))$	150 75	pF pF	C _{F1} in Figure 1 C _{F2} in Figure 1				
Op Amp Cap Cop. Cor Data Slicer Threshold Variables Bit period Tor Bit intervals n RC Time Constant RCrc	_{e+} = a / (4π (100k)(f _{-3dB}))	75	pF	C _{F2} in Figure 1			05+	0P+ 0F
Data Slicer Threshold Variables Bit period ToR Bit intervals n RC Time Constant RCTc	,, , , , , , , , , , , , , , , , , , ,							
Data Slicer Threshold Variables Bit period ToR Bit intervals n RC Time Constant RCrc						-		士 印 士 印
Data Slicer Threshold Variables Bit period ToR Bit intervals n RC Time Constant RCTc								÷
Data Slicer Threshold Variables Bit period TDR Bit intervals n RC Time Constant RCTc						Ecura 1 Sal	an Kau Launas	e Data Ellar
Data Slicer Threshold Variables Bit period TDR Bit intervals n RC Time Constant RCTC						rigute 1. Sai	erriey Lonpas	o Data river
Bit period T _{DR} Bit intervals n RC Time Constant RC _{TC}	Equations		Units					
Bit intervals n RC Time Constant RC _{TC}	Tos = 1 / fos	0.100	ms					
RC Time Constant RCTC		5						1
	RCTC = n · TCR	0.500	ms				M4X7030	
							D.ETA	
Data Slicer Cap C		0.047	μF				SUCER	
Data Slicer Resistor R	$R = RC_{TC} / C$	10.638	kΩ					
						_		8
Cutoff Frequency fc	$f_{C} = 1 / (2\pi RC)$	318	Hz			-	.±	~~~
							Ϋ́, Τ	
						– Hgure 2. Gen Filter	erating Data-Sil	cer Inresnoid Using a Loi
→ ► Instructions Baseband System Sic			1			14		

Figure 1. The Baseband System worksheet.

An example circuit is provided as a reference. The diagram is taken from the MAX7030 data sheet and the equations for calculating the Sallen-Key filter capacitor values are provided in each of Maxim's ISM radio data sheets. The resulting capacitance values shown for C_{DF} and C_{OP+} should be adjusted to the nearest standard capacitor value when implemented in the physical design.

In the **Data Slicer Threshold** section, two user entry cells are provided for the bit interval and the data slicer capacitor. The spreadsheet uses these cells to calculate a value for the resistor. The combined RC time constant defines the decay rate of the comparator threshold. These values can be used for the basic RC slicer or in combination with peak detectors, which provide fast level setting for optimum threshold establishment.

Slicer Threshold w Peak Detect Sheet

The multitrace plot found on this sheet can be used to simulate operational characteristics of the baseband system. A data table is listed below and is used to assemble the traces shown in the Transient Response of Slicing Threshold graph.

The plot contains seven traces:

- Filtered Baseband: This trace is the basic analog signal coming out of the limiting amplifiers.
- RC Threshold: This trace is a reduced amplitude, phase-delayed version of the filtered baseband signal.
- Max Peak w/ Decay: This trace uses a selectable tau value to represent a periodically peaking signal.
- Min Peak w/ Growth: Similar to the max peak, this trace uses the same tau to represent a periodically plunging signal.
- **Chosen Threshold**: This trace uses the RC threshold as its source, or an average of the Max Peak and the RC Threshold, or an average of the max peak and min peak signals.
- Data Output (RC Threshold): This dotted line trace shows the data output if only the RC slicer level is used to generate the threshold level.
- . Chosen Data Output: This trace compares the filtered baseband to the chosen threshold to generate the output

data signal.

Baseband Calc 120517.slsx													-	o x
A	B	c	D	E	F G	H	1 J	I K		L	M	N	0	P
1 Data Slicer Threshold Plo	Variable	s Equations		Units										
2 Data Rate	fore		10	kHz			Te	ancient E	leenon	e of Slid	ing Th	rechold		
3 Filter Cutoff	fe		0.31831	kHz			16	ansient P	respons	se or and	ang n	resnoid		.
4 Filtered Amplitude	Athreat	$A_{\text{Threah}} = f_C / (f_{OR}^2 + f_C^2)^{0.5}$	0.031815				- Fibered Base	eband (DSP)			C Thresho	id and the		
5 Filtered Phase	Othesh	othesh = -arctan(foe/fc)	-1.53898	Rad			Chosen Thr	shold			Data Outpu	(RC Thresho	4d)	
6 Filtered Phase	OThresh		-88.1768	Deg			Chosen Dat	a Output						1
7 Exp Decay Amplitude			-0.9682		2.5				1				1	
8 Baseband Offset			0.5	V			1 1		1					
9 40 Thurshold					2					1	T1 (1	_	-	
11 Initial Threshold Offset				v										
12 Final Threshold Offset (squeich)			0	v										
13					1.9					11				
14 Data Offset (plot)			1.1	V	4									
15					ĝ 1 -	1		~	1		_	~	-	
16 Peak Detect Average (needed to p	prevent circ	ular reference)	0.5	v	a	A		/ \	17 \	1/1		7 \		
17 Peak Detectors (0 = none, P = po Deak Detectors	isitive, B =	both)	B		₹ 0.5									
10 Peak Detect t			0.4					- 1 -			$\sqrt{7}$	- \-	7	
20 Noise		0 = Off. 1 = On	0	on/off		\ \	$/ \rightarrow /$				ΔI		Л	
21 Noise Amplitude on FBB			0.08	V	0		4 14			-	~~~		+	_
22 Noise on PDs			0.01	V					1					
23 Noise Amplitude on Threshold			0.02	V	-0.5								+	
24							1 1		1					
Recommend Timebase			1.5	ms										
20 Timebase (plot)			0.0	ms			0.1 0.2		3	0.4	0	5	0.6	
28									Time (mel		-		
29									. anne (in the second se				
30														
31	Durker	Clear Threehold on Deals D	1			1	-	_	_	_	-	_	_	
ansuruccions	ayacem_	Silver Inteshold W Peak Di	1000											

More detailed image. (PDF, 1.1MB)

Figure 2. The Slicer Threshold w Peak Detect sheet.

User inputs are needed in a few cells to help format the plot and to represent some choices in the design.

Baseband offset (cell D8) is simply an offset level of the filtered baseband signal as presented in the plot.

Initial threshold offset (D11) and final threshold offset (D12) provide two conditions for the user to adjust the dataslicing threshold end points. These entries are indicated by a blue color.

Data offset (D14) can be used to adjust the location of the digital data trace. This entry is highlighted in green.

Peak detectors (D17) allow the user to choose the different configurations involved with the slicing threshold. Noting a "0" indicates that no peak detector traces are used to determine the threshold; "P" will average the RC threshold with the max (positive) peak detector; and "B" will average both the maximum (positive) and minimum (negative) peak detectors together to generate the slicing level. Peak detect τ (D18) provides adjustment for the decay of the peak detector levels. These entries are indicated in orange.

Noise (D20) provides a switch to include random noise values on the filtered baseband trace, the peak detectors, and the RC threshold. The amplitudes for each noise signal can be adjusted with the respective cells (D21, D22, and D23). The noise-related entries are highlighted in yellow.

Finally, the spreadsheet will provide a recommended time base for the graph. The user can enter the suggested plot time base value in cell D26 or provide their own.

🚰 Baseband Calc 120517.xlsx 🗕 🗕											o x				
A A							н								P
34															
35															
36															
37	Time (ms)	Filtered Baseband (DSP)	RC Thresh	max peak	min peak t	Max Peak	Min Peak v	Positive Th	Both Thres	Chosen Th	Data Outp	Chosen D	ata Output		
38	0	0.5	-0.4841	0	0	0.5	0.5	0.00795	0.5	0.5	2.1	1.1			
39 38	0.00375	0.616722682	-0.47631	0	1	0.616723	0.5	0.070207	0.558361	0.558361	2.1	2.1			
40	0.0075	0.72699525	-0.46772	0	2	0.726995	0.5	0.129636	0.613498	0.613498	2.1	2.1			
41	0.01125	0.824724024	-0.45842	0	3	0.824724	0.5	0.183151	0.662362	0.662362	2.1	2.1			
42	0.015	0.904508497	-0.44852	0	4	0.904508	0.5	0.227993	0.702254	0.702254	2.1	2.1			
43	0.01875	0.961939766	-0.43818	0	5	0.96194	0.5	0.261878	0.73097	0.73097	2.1	2.1			
44	0.0225	0.99384417	-0.42759	0	6	0.993844	0.5	0.283129	0.746922	0.746922	2.1	2.1			
45	0.02625	0.998458667	-0.41693	0	7	0.998459	0.5	0.290764	0.749229	0.749229	2.1	2.1			
46	0.03	0.975528258	-0.40642	1	8	0.993807	0.5	0.293692	0.746904	0.746904	2.1	2.1			
47	0.03375	0.926320082	-0.39627	2	9	0.9892	0.5	0.296467	0.7446	0.7446	2.1	2.1			
48	0.0375	0.853553391	-0.38664	3	10	0.984635	0.5	0.298996	0.742317	0.742317	2.1	2.1			
49	0.04125	0.761249282	-0.37771	4	11	0.980113	0.5	0.301201	0.740056	0.740056	2.1	2.1			
50	0.045	0.654508497	-0.36959	5	12	0.975633	0.5	0.30302	0.737816	0.737816	2.1	1.1			
51	0.04875	0.539229548	-0.36237	6	13	0.971194	0.5	0.304413	0.735597	0.735597	2.1	1.1			
52	0.0525	0.421782767	-0.35607	7	0	0.966798	0.421783	0.305363	0.69429	0.69429	2.1	1,1			
53	0.05625	0.308658284	-0.35069	8	0	0.962442	0.308658	0.305878	0.63555	0.63555	2.1	1.1			
54	0.06	0.206107374	-0.34615	9	0	0.958127	0.206107	0.305987	0.582117	0.582117	2.1	1.1			
55	0.06375	0.119797017	-0.34236	10	0	0.953852	0.119797	0.305746	0.536824	0.536824	2.1	1.1			
56	0.0675	0.054496738	-0.33917	11	0	0.949617	0.054497	0.305226	0.502057	0.502057	2.1	1.1			
57	0.07125	0.01381504	-0.33639	12	0	0.945421	0.013815	0.304514	0.479618	0.479618	2.1	1.1			
58	0.075	0	-0.33384	13	0	0.941265	0	0.30371	0.470633	0.470633	2.1	1,1			
59	0.07875	0.01381504	-0.33132	14	1	0.937148	0.004666	0.302916	0.470907	0.470907	2.1	1.1			
60	0.0825	0.054496738	-0.3286	15	2	0.933068	0.009288	0.302234	0.471178	0.471178	2.1	1.1			
61	0.08625	0.119797017	-0.32551	16	3	0.929027	0.013867	0.301759	0.471447	0.471447	2.1	1,1			
62	0.09	0.205107374	-0.32187	17	4	0.925024	0.018403	0.301577	0.471713	0.471713	2.1	1.1			
63	0.09375	0.308658284	-0.31755	18	5	0.921058	0.022897	0.301754	0.471977	0.471977	2.1	1.1			
64	0.0975	0.421782767	-0.31245	19	6	0.917129	0.027349	0.302338	0.472239	0.472239	2.1	1,1			
65	0.10125	0.539229548	-0.30653	20	7	0.913237	0.031759	0.303355	0.472498	0.472498	2.1	2.1			
66	0.105	0.654508497	-0.29977	21	8	0.909381	0.036128	0.304804	0.472755	0.472755	2.1	2.1			
R + + H Instructions Baseband :	System	Slicer Threshold w Peak De	tect 2	/				(The second			1. D.

More detailed image. (PDF, 1.9MB)

Figure 3. The Slicer Threshold w Peak Detect sheet.

Appendix: Example Calculation

This example will walk a user through the process of entering data into the Baseband Calculations workbook and will explore the results.

- 1. Open the Baseband Calculations workbook.
- 2. Select the Baseband System tab along the bottom of the Excel® workbook.
- 3. Select cell D3 (Data Rate) and enter the value of 3.333. Note the filter knee now shows about 5kHz.
- 4. Enter the values of 1.414 into cell D5 (*a*), and 1 into cell D6 (*b*). These values represent a Butterworth configuration of the Sallen-Key filter. Note that the data filter cap value (C_{DF}) now indicates 450pF and the op amp cap (C_{OP+}) indicates 225pF. For an actual example, the standard values of 470pF and 220pF are represented in the MAX1471 data sheet.
- 5. Enter the value of 4 in cell D17 (Bit Intervals).
- 6. Enter the value of 0.047 in cell D20 (Data Slicer Cap). Note that the data slicer resistor is showing about 25k?.
- 7. Now, select the *Slicer Threshold w Peak Detect* sheet. The data rate in cell D2 will show 3.333kHz and the Transient Response of Slicing Threshold graph will show traces that would represent various baseband pins on the ISM receivers. For a MAX1471, the Filtered Baseband line would represent the output from pin 20, DSF+ and the RC Threshold trace would represent the signal on pin 19, DSF-.
- 8. Enter the recommended value of 3.6 into cell D26 and observe the change in time-base of the plot. Then change this value to 2 showing about 6 cycles on the plot.
- 9. Choose to display the output without the peak detectors by entering a 0 in cell D17. Next enter a P and observe the improved performance of the output data trace.
- 10. Finally, turn on the noise by entering a 1 in cell D20. Increase the noise on the analog signal by entering the value 0.2 into cell D21. Observe the impact on Data Output based on the RC threshold.

Related Application Notes

Application note 3671, "Data Slicing Techniques for UHF ASK Receivers"

Excel is a registered trademark of Microsoft Corporation.

Related Parts		
MAX1470	315MHz Low-Power, +3V Superheterodyne Receiver	Free Samples
MAX1471	315MHz/434MHz Low-Power, 3V/5V ASK/FSK Superheterodyne Receiver	Free Samples
MAX1473	315MHz/433MHz ASK Superheterodyne Receiver with Extended Dynamic Range	Free Samples
MAX7030	Low-Cost, 315MHz and 433.92MHz ASK Transceiver with Fractional-N PLL	Free Samples
MAX7031	Low-Cost, 308MHz, 315MHz, and 433.92MHz FSK Transceiver with Fractional-N PLL	Free Samples
MAX7032	Low-Cost, Crystal-Based, Programmable, ASK/FSK Transceiver with Fractional-N PLL	Free Samples
MAX7033	315MHz/433MHz ASK Superheterodyne Receiver with AGC Lock	Free Samples
MAX7034	315MHz/434MHz ASK Superheterodyne Receiver	Free Samples
MAX7036	300MHz to 450MHz ASK Receiver with Internal IF Filter	Free Samples
MAX7042	308MHz/315MHz/418MHz/433.92MHz Low-Power, FSK Superheterodyne Receiver	Free Samples

More Information

For Technical Support: http://www.maximintegrated.com/support

For Samples: http://www.maximintegrated.com/samples

Other Questions and Comments: http://www.maximintegrated.com/contact

Application Note 5426: http://www.maximintegrated.com/an5426 TUTORIAL 5426, AN5426, AN 5426, APP5426, Appnote5426, Appnote 5426 Copyright © by Maxim Integrated Products Additional Legal Notices: http://www.maximintegrated.com/legal